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The figures in the margin indicate full marks.
Candidates are required to give their answers
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Group --A
(4 Marks) |
1. Answer any four questions : | 1x4=4
}p)’ Is the function given by
x? cos%'if 0<x<l1

S(x)= |
0 if x=0

a function of bounded variation? Justify your
answer. '

Qa{ Define Refinement of a partition.

(c) Prove that l‘(%) = 7.

L.T.O.
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2)
@ If /:[0,1]- R defined by

F(x) =0, xe[0,1]nQ
=1, x¢[0,1]NnQ

then show that fis not R—intcglable on [0, 1].

| ' .
(¢) Show that the improper integral fo-]_% s

- divergent.
(® Let f,(x)=xe™, x>0. Show that the sequence
of function {f,} is point wise convergent on

[0, «0)to the function fdefined by f(x) =0,x=0.

(2) Explain why the Fundamental theorem of integral
calculus can not be used to evaluate _[ :x[x]dx. "

Group - B
'A-nsweranytwo questions : . 5x%2=10
. that Jim )’ -Coskx__1
2. Prove tha ll_xgg k(k+]) 3
3. Let f,,(x)=log(n2+x2.),, x€R. Show that the
sequence {f;} is uniformly convergent on R but the

sequence {,} is not uniformly convergent on IR.

4. Prove that f :[a,b]—>R be a function of bounded

variation on [a, b] iff f can be expressed as the
difference of two monotonic increasing functions op

la, 2]. 5



( 3 )

5. Let f:[a,b] >R be integrable on [a, b). If there
cxﬁsaposﬁivzm!mmberlfmcbﬂﬂf(x)’z}fﬁar
aif x_e[a,b] then show that 7’" i2 integrable on [a, 5]

Group - C
Answer any fwo questions - 922=1%
6. (2) Let f:[a,b]—»ﬁ be boundend on [a, 5] znd let
fbeconﬁrmmon[a,b}emeptonainf'mitc
mbsetSc[a,b]mchﬂ:mthcmmbercfl&niz

points of S is finite. Then prove that f is

R-miegrable on [a, b. 4
% (b) Prove that the even function f(x)=|xjon

[—'x,z] Ensaminesezisﬁ)!"mxia"sﬁxmas

x_4 cos3x . cosSx

5 z{cosx{— 3 * r +.,.},

7. @ ¥ f:[a,b] >R be integrable on la, 5] and £
pme?amaﬁaivaﬁn¢on[a,b],thmpm
-t [[ /= 4(8)-4(a)

5

!
5
|
:

g. (a‘)’jl‘aﬂtwmdaﬁm; 5
{b)MmdmeﬂxCaumHadmnudﬂmm 4
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Group - A
(4 Marks)
1. Answer any fowr questions : : 1x4=4

(a) Find keRso that the set § = {(1, 2, 1),
(k, 3, 1), 2, k, 0)} is linearly dependent in R”.

Find the dimension of the subspace S of R’ defined
by - ‘

S={(x,y,z,w)e]R’iq :x+y+z+w=0}

c) If a,p be two 6rthogonal vectors in a Euclidean
space V, then show that

o+ BIP=l el +IIBIF

P.T.O.
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C 2 )

Mnd the range of the lincar transformation

T:R = R* given by

T(x,y,z):(x+z,x~i-y+7_z, 2x+y+3z)

(€) If {u,u,,...,u,} be an orthonormal set, prove that
for any veV, the vector w=v- <v,u > u-
<V,uy >u,—..— <v,u_>u_is orthogonal to each
of the u,

(H) Let ) be an eigen;/a]ue of a linear operator T on
an nner product space V. If 7° = T", then show
that |1 |=1. '

4{1;:: T:R? - R?be a linear transformation given
by
T.(x}, x,) = (% + 2, %, - Xy, x;)
Then find rank 7.
Group - B
(10 Marks)

Answer any fwo questions. 5x2=10

2. If U and W be two subspaces of a vector space V
over a field F such that UﬂW={9} and if
{0, 0y, } and (B, By, ... B} be respectively
the bases of U and W, then show that {a,, a,, ..., «, ,

-

By Byrers B} is a basis of U + W, s



¢ 3 )
> Determine the linear mapping 7 : B — B> which maps
the basis vectors 0, 1, 1), (1, 0, 1), (1, 1, 0) of R’
to(1, 1, 1), (1, 1, 1), (1, 1, 1) respectively. Verify that
dimker 7 + dim ImT = 3. 5

4:/I</ind the algebraic and geometric multiplicities of each
eigen value of the matrix

Zi- 2 1

1 3 1

1 2 2 ' >
5. If T:V —V be a linear transformation, show that the

following statements are equivalent :

() Range 7N KerT = {0}

@ If T(T(v))'=0 then T(v)=.0,ve V. 3+2
Group - C
(1& Marks)

Answer any fwo questions. 9x2=18

6. (a) If Vis a finite dimensional inner product space and
W is a subspace of V, then show that

V=Wwew:. , 5

(b) Let T be a normal operator. Prove :
@ 7(v)=0 ifand only if 7" (v)=0
@@ 7-A/ is normal.

rD
+
(3]

P.T.O.
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8

( 4 )
(@) Extend the set of vectors {(2, 3, -1), (1, =2, -
4)} to an orthogonal basis of the Euclidean space

R’ with standard inner product and then find the
associated orthonormal basis. 5

\/1%{ Let T be the linear operator on R*defined by
T(x,, x, x;)= (3xl+x3,+—2xl+x2,—xl+2x2+4x3).
Show that T is invertible. 4

. \(@Apply gram-schmidt process to obtain an

orthonormal basis of the subspace of the Euclidean
space R" with standard inner product, spanned by
the vectors (1, 1, 0, 1), (1,-2,0,0), (1,0, -1, 2).

- | 5

‘:(a?/A linear mapping T:R?> — R* is defined by
| I(x,, x,, x,) ={x;*+x;, x,+x, x,+x,, x +x,+
x)), (%%, %) €R>. Find ker T. Verify that the
set {T(e,),T(e,),T(e,)} is linearly independent
in R‘, where €,=(1,0,0), €,=(0,1,0) and
&,=(0,0,1). ' 4
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Group - A
(4 Marks)
. Answer any four questions - 1x4=4

\-@'{S\how that Lt f(x,y) does not exist, where

x—0
y—0

2 2
X =y 2 2
ﬁ_T’x-f-y ;tO

S(xy)=1%+y
L0 X4yt =0

' 3_ 3 ' '
xz_y_z-, x2+y2;¢0
0 1x2+y2=0’

then show that £, (0,0)# /, (0,0). PTO.

G-5/4% - 800 '



( 2 )
(¢) Find the directional derivativc of

¢ =4xz’ =3x%y%z at (2, -—1 2) in the direction

f —3+6k.

V(K‘ Evaluate _[(:2‘ J':’sodrde.

(e) Evaluate _[U dxdydz where V is the tetrahedron
boundedbyx 0,y=0,z=0,x+y+z=1.

..,(Arove that Curl(grad'(p) =0

(g) State Gauss divergencé theorem.
Group - B
. (10 Marks)
Answer any fwo questions : 5x2=10

\Aw that the necessary and sufficient condition that a

nonzero differentiable vector function. f (¢) to possess

the constant magmtude is that f d’ =0.

3. Evaluate the line integral <f> f.dF by Stokes theorem
" where T being the boundary of the rectangle 0 <x < 2
0<y<2 z=1and f=sinzi-cosx +sin yk.

\



/’ "I{v: . (x.»)#(0.0)
. Show that f(x,y)=4% *V

0 . (xy)=(0.0)

has directional derivative at (0,0) in any direction
ﬁ=(’,M)thrc I +m? =1but [ is discontinuous at
(0, 0).

' S I -
5. Show that if =5+ <5+ =1, the maximum value of
a .

2
- abc
2 A\/i y

Cc

Group-C
(18 Marks)
Answer z;ny two questions : 9x2=18
6. (a) State and prove Schwarts Theorem. 6

(b) Show that [;j;'y'{(x-l)z+y3}dnzy=%.

d

7. Jz{Showthm Tlog’ = 7

r

where F=xf+_;j‘+ziamlr={?|. 4
Jg) Use Greens theorem to evaluate t}r(.xydr - y’uf\-)
where I” is a square in the Xy plane with vertices

<

(0, 0), (0, 1), (1, 0) and (1, 1). 8
BT.O.
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