UG/3rd Sem (H)/22/(CBCS)

2022

CHEMISTRY (Honours)

Paper Code: CEMH DC-T7

[Organic Chemistry]

Full Marks: 25

Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer any *five* questions from the following: $1 \times 5 = 5$

(a)
$$Ph \xrightarrow{NC} OH \xrightarrow{HO^{\Theta}} A$$

In the above reaction, the product "A" is

- (i) PhCH(OH)CO,H
- (ii) PhCHO
- (iii) PhCO₂H
- (iv) PhCH₂OH

(b)
$$Ph_3\bar{C}Na^+ \xrightarrow{KNH_2^{\text{in}}} \mathbf{B}$$

In the above reaction, "B" is

- (i) Ph_3CH
- (ii) Ph₄C

- (c) Which of the following statements is most appropriate for ethylene and 1,3-butadiene?
 - (i) 1,3-Butadiene is more nucleophilic than ethylene
 - (ii) 1,3-Butadiene is more electrophilic than ethylene
 - (iii) Both (i) and (ii)
 - (iv) Neither (i) nor (ii)

(d) Observe the following reaction:

1.

The required set of reagents for this conversion is

- (i) A. CH_3MgBr then H^+ , B. H_2SO_4 /heat, C. NH_2NH_2 , KOH
- (ii) A. $(CH_3)_2CuLi$ then H^+ , B. $NaBH_4/EtOH$, C. $H_2SO_4/heat$
- (iii) A. CH, Li then H⁺, B. PCC/heat
- (iv) A. $NaBH_4 CeCl_3$ then H^+ , B. MnO_2 , C. CH_3Li

The breaking of the bond indicated by an arrow mark is the slowest step in the acid-catalyzed hydrolysis of the above ester. The correct arrow marking is:

- (i) 1
- (ii) 2
- (iii) 3
- (iv) 4

The above conversion can be carried out using

- (i) An Organomagnesium Reagent
- (ii) An Organocuprate Reagent
- (iii) An Organolithium Reagent
- (iv) An Organozinc Reagent
- (g) In the following reaction the correct structures of A & B are:

$$B \leftarrow H^{\oplus} \longrightarrow A$$

$$\xrightarrow{1. \text{Hg(OAc)}_2} \xrightarrow{2. \text{H}_2\text{O}} A$$

$$B: \longrightarrow_{OH}$$

(iv) A:
$$\rightarrow$$
 OH

$$B: \longrightarrow_{OH}$$

(h) Observe the following reaction:

The required set of reagents for this conversion is

- (i) A. SeO_2 , B. Conc. NaOH (aq), C. H_3O^+
- (ii) A. Conc. NaOH (aq), B. SeO₂, C. H_3O^+
- (iii) A. NaCN, B. H,O+
- (iv) **A.** $Ph_3P = CH(OMe)$, **B.** H_3O^+
- 2. Answer any four questions:

 $2 \times 4 = 8$

(a) Formulate a plausible mechanism for the following reaction.

$$CHO$$
OH

 CHO
OH

 $PTSA$
 $Dry Bernzene/\Delta$

(b) How will you carry out the following conversion?

$$\rightarrow$$
 \rightarrow $c = \langle$

- (c) Acetals are stable towards bases but easily hydrolysed by acids. Why?
- (d) Bromination of acetophenone in presence of catalytic amount of $AlCl_3$ yields $PhCOCH_2Br$ whereas with excess $AlCl_3$ it yields m-bromoacetophenone. Explain.

(e) Carryout the following conversion:

MeCOMe
$$\longrightarrow$$
 \longrightarrow CO₂H

(f) Propose a mechanism for the following reaction:

- (g) What happens when benzoic acid is separately treated with excess of methyl magnesium bromide and excess of methyl lithium? Do the reactions follow the same pattern? If not, why?
- (h) How could you carry out the following transformation?

3. Answer any two questions:

6×2=12

- (a) (i) Why lithium aluminium hydride is not used in aqueous or alcoholic medium?
 - (ii) Explain the stereochemical aspects of the reaction between E-2-butene and bromine with plausible mechanism.
 - (iii) Account for the following observations:

$$\begin{array}{c}
 & \xrightarrow{\text{H}_2\text{O}_1/\text{HCO}_2\text{H}} \\
 & \xrightarrow{\text{H}_2\text{SO}_4}
\end{array}$$

$$\begin{array}{c}
 & \xrightarrow{\text{H}_2\text{SO}_4}
\end{array}$$

- (iv) How would you synthesize the following molecule starting from any organic compound having not more than three carbon atoms: MeCH(OH)CH₂CH₂NH₂? 1½+1½+1½+1½+1½
- (b) (i) Using hydroboration-oxidation reaction how you carry out the following conversion?

- (ii) Convert: Toluene \rightarrow *m*-bromotoluene.
- (iii) Propose a reasonable mechanism for the following reaction:

$$\begin{array}{c}
1. \text{CH}_3 \text{Mgl} \\
2. \text{H}_3 \text{O}^+ \\
3. \text{NaOH}
\end{array}$$

$$\begin{array}{c}
2+2+2
\end{array}$$

(c) (i) Compound A (C₈H₁₂) undergoes hydration with a mixture of HgSO₄ and H₂SO₄ to produce compound B (C₈H₁₄O). Compound B gives positive haloform reaction. Treatment of B with PhMgBr followed by acidification with aqueous HCl gives compound C and D. C and D are isomeric compounds having molecular formula C₁₄H₁₈. Ozonolysis of C produces cyclohexanone as one of the major

products. Find the structures of A, B, C and D and explain the observation.

(ii) Outline the preparation of A from acetylene.

4+2

- (d) (i) Nitration of phenylboronic acid, $PhB(OH)_2$ with mixed acid at -20°C gives predominantly the m-derivative while on treatment with HNO_3/Ac_2O , the predominant product is the o-derivative. Suggest an explanation.
 - (ii) Slow addition of methyl magnesium bromide to a cold, ethereal solution of benzoyl chloride is a better method than addition of methyl magnesium bromide to ethyl benzoate for the preparation of acetophenone. Explain.
 - (iii) Explain mechanistically why mercuric ion catalysis is better than acid catalysis for the cleavage of 1,3-dithianes.
 - (iv) Why primary alcohols cannot be oxidized to the corresponding aldehyde by Oppenauer Oxidation? Suggest a methodology to overcome this problem. 1½+1½+1½+1½