UG/1st Sem/H/20 (CBCS)

2020
 PHYSICS (Honours)
 Paper : PHYH - DC- 1T
 [CBCS]

Full Marks : 25
Time : Two Hours
The figures in the margin indicate full marks.
Candidates are required to give their answers
in their own words as far as practicable.

1. Answer any five questions:
(a) Define scalar field and vector field. Give example of each.
(b) If a vector field is given by $\vec{F}=\left(x^{2}+y^{2}+x\right) \hat{i}-(2 x y+y) \hat{j}$. Is this field irrotational ?
(c) If $\vec{r}=t \hat{i}-t^{2} \hat{j}+(t-1) \hat{k}$ and $\vec{S}=2 t^{2} \hat{i}+6 t \hat{k}$, evaluate $\int_{0}^{2} \vec{r} \cdot \vec{S} d t$
(d) With the help of divergence theorem, show that $\int(\vec{\nabla} \phi \times \vec{\nabla} \psi) \cdot d \vec{s}=0$
(e) Find the value λ, for the differential equation $\left(x y^{2}+\lambda x^{2} y\right) d x+$ $(x+y) x^{2} d y=0$ is exact.
(f) Evaluate the integral $I=\int_{0}^{\infty} e^{-31} \delta(t-4) d t$
(g) Solve the following differential equation $\frac{d^{5} y}{d x^{5}}-\frac{d^{3} y}{d x^{3}}=0$
(h) Find the unit normal to the surface $x y^{3} z^{2}=4$ at $(-1,-1,2)$
2. Answer any three questions :
(a) Use the Divergence Theorem, evaluate $\iint F . d S$ where $F=4 x i-2 y^{2} j+z^{2} k$ and S is the surface bounding the region $x^{2}+y^{2}=4, z=0$ and $z=3$. 5
(b) Prove that the spherical polar coordinate system is orthogonal.
(c) Evaluate $\iiint(2 x+y) d V$, where V is closed region bounded by the cylinder $z=4-x^{2}$ and the planes $x=0, y=0, y=2$ and $z=0.5$
(d) Solve : $\cos ^{2} x \frac{d y}{d x}+y=\tan x$
(e) Solve $\left(D^{2}-6 D+9\right)=6 e^{3 x}+7 e^{-2 x}-\log ^{2}$

UG/1st Sem/H/20 (CBCS)

2020

PHYSICS (Honours)

Paper : PHYH - DC-2T
 [CBCS]

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions :
(a) What do you mean by non-inertial frames? Give an example of such frame.
(b) A particle moves in a field of force given by $F_{x}=y z(1-2 x y z)$ and $F_{z}=x y(1-2 x y z)$. Verify that the force is conservative.
(c) The trajectory of a particle of unit mass is given by the radius vector, $\vec{r}=\hat{l} \alpha \cos \omega t+\hat{j} b \sin \omega t$, where a, b are constants. Calculate angular momentum of the particle about the origin. Show that it is constant and along \hat{k}.
(d) Show that the rocket speed is twice the exhaust speed when $\frac{M_{0}}{M}=e^{2}$
(e) Explain why a hollow cylinder is stronger than a solid cylinder of the same length, mass and material.
(f) Calculate the Poisson's ratio for silver. Given Young's modulus for the silver is $7.25 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$ and bulk modulus is $11 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$.
(g) State Kepler's laws of planetary motion.
2. Answer any three questions :
(a) Prove that the kinetic energy of rotation of a rigid body can be expressed in the form $T=\frac{1}{2} I_{i j} \omega_{i} \omega_{j}$ with the convention that repeated indices are summed over x, y, z and show that relative to any point in the rigid body it can be simplified to the form $T=\frac{1}{2}\left(I_{1} \omega_{1}^{2}+I_{2} \omega_{2}^{2}+I_{3} \omega_{3}^{2}\right) . \quad 4+1=5$
(b) Derive an expression for the equation of continuity of an ideal fluid of density ρ.What is the form of this equation, when the fluid is incompressible?
(c) (i) If a body falls freely in the earth's gravitational field form infinity, show that it attains the same velocity as that attained by a free fall from a height above the earth equal to the radius R under a constant acceleration of gravity ' g '.
(ii) The differential equation of the orbit of a particle of mass m under a central force is given by $\frac{d^{2} u}{d \theta^{2}}+u=-\frac{m}{L^{2} u^{2}} f\left(\frac{1}{u}\right)$ where $u=\frac{1}{r}$, $L=$ constant, other notations have usual significance. Use the above relation and consider the following : A particle moves in a central orbit described by $r=e^{(-\alpha \theta)}, \alpha$ is a positive constant, with force centre at O. Find the nature of the force as a function of r.
(d) With necessary assumptions, deduce Poiseuille's formula for the viscous flow of a liquid in a capillary tube.
(e) Find the depression of a cantilever beam of uniform cross-section and weight W, when loaded at the free end by a weight W_{0}.
