UG/6th Sem (H) / 22 (CBCS)

U.G. 6th Semester Examination 2022
 PHYSICS (Honours)

Paper Code : DC - 13

(Electromagnetic Theory)

Full Marks : 25

Time : Two Hours

The figures in the margin indicate full marks.
Candidates are required to give their answers
in their own words as far as practicable.

1. Answer any five questions:
(a) What is significance of Brewster angle ?
(b) Show that in a conductor, the clectric and magnetic field are no longer in phase.
(c) The conductivity of a metal is $\sigma=5.8 \times 10^{7} \mathrm{mho} / \mathrm{m}$. Find out the attinuation of an electromagnetic waves of frequency 1 kHz by a metal plate of thickness 0.1 mm .
(d) A uniform plane wave propagating in a medium has $\vec{E}=2 e^{-\alpha z} \sin \left(10^{8} t-\beta z\right) \hat{y} Y / \mathrm{m}$. If the medium is characterized by $\epsilon_{r}=1, \mu_{r}=20$ and $\sigma=3$. Find α and β by checking the nature of the medium.
(e) An unpolarized light of intensity I_{o} is passed through two Nicol prisms with their principle section at 45° to each other. What is the intensity of the transmitted light?
(f) Whether the following potentials follow the coulomb gauge or the Lorentz gauge. $\phi(\vec{r}, t)=0, \vec{A}(\vec{r}, t)=\frac{1}{4 \pi \in_{0}} \frac{q t}{r^{2}} \hat{r}$.
(g) What are the boundary conditions of E and B for p-polarisation ?
2. Answer any three questions:
(a) What is skin depth? Obtain an expression for skin depth in a conductor.
(b) Given the electric and magnetic field vector for a plane electromagnetic wave calculate the average of (i) energy density stored in em fields (ii) poynting vector and (iii) momentum
density stored in em fields where, $\vec{E}(z, t)=E_{o} \cos (K z-w t+\delta) \hat{x}$; $\vec{B}(z, t)=\frac{1}{c} E_{o} \cos (K z-w t+\delta) \hat{y}$. $1^{1 / 2}+1 \frac{1}{2}+2$
(c) Define plane of vibration for a plane polarized light. Indicate, how polarized light is obtained using the "double refraction" phenomenon.
(d) Starting with Maxwells equations, derive inhomogeneous wave equation in terms of scalar potential ϕ and vector potential \vec{A}. 5
(e) What is optical activity ? Explain this using Fresnel's theory. $1+4$
