U.G. 4th Semester Examinations 2022
 MATHEMATICS (Honours)

Paper Code : DC-10
 (Probability \& Statistics)

[CBCS]

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Group-A

1. Answer any four questions:
(a) If two dice are thrown, what is the probability that the sum is greater than 9 .
(b) A random variable X has a discrete set of values $0,1,2,3$ with corresponding probability mass distribution $\frac{1}{8}, \frac{3}{8}, \frac{1}{4}, \frac{1}{4}$ respectively. Find the distribution function of X.
(c) The distribution function of a random variable X is given by

$$
F(x)= \begin{cases}0, & x \leq 0 \\ x, & 0<x \leq 1 \\ 1, & x>1\end{cases}
$$

Find the probability density function.
(d) Show that $E(c g(x))=c E(g(x))$.
(e) $f(x)=\frac{4 x}{5}$ when $0<x \leq 1$

$$
\begin{aligned}
& =\frac{2}{5}(3-x) \text { when } 1<x \leq 2 \\
& =0 \text { elsewhere }
\end{aligned}
$$

Find $E(x)$.
(f) $f(x, y)=\frac{1}{(b-c)(d-c)}$ for $a<x<b, c<y<d$

$$
=0 \text { elsewhere }
$$

is the Joint density function of a distribution of (x, y). Find the marginal distribution of y.
(g) A random variable x follows poisson distribution.

If $2 P(X=2)=P(X=1)+2 P(X=0)$, then find the value of variance of X.

Group-B

Answer any two questions :
2. The Joint probability density function of X and Y is

$$
\begin{aligned}
f(x, y) & =8 x y \text { if } 0 \leq x \leq y, 0 \leq y \leq 1 \\
& =0 \text { elsewhere }
\end{aligned}
$$

Examine whether X and Y are independent. Also compute $\operatorname{Var} X$, $\operatorname{Var} Y$.
3. The Joint probability distribution of two random variables X and Y are given by $P(X=0, Y=1)=\frac{1}{3}, P(X=1, Y=-1)=\frac{1}{3}, P(X=1, Y=1)=\frac{1}{3}$

Find marginal distributions of X and Y .
4. Let (X, Y) have the general two-dimensional normal distribution and we make a linear transformations
$U=\left(X-m_{x}\right) \cos \alpha+\left(Y-m_{y}\right) \sin \alpha$
$V=-\left(X-m_{x}\right) \sin \alpha+\left(Y-m_{y}\right) \cos \alpha$

Show that U, V will be independent if $\tan (2 \alpha)=\frac{2 \rho \sigma_{x} \sigma_{y}}{\sigma_{x}^{2}-\sigma_{y}^{2}}$, where $m_{x}, m_{y}, \sigma_{x}, \sigma_{y}, \rho$ have their usual meaning.
5. If $X(n, p)$ is a Binomial distribution, then prove that $\mu_{k+1}=p(1-p)\left(n k \mu_{k-1}+\frac{d \mu k}{d p}\right)$ where μ_{r} is the $r^{\text {th }}$ central moment of the distribution.

Group-C

Answer any two questions :
6. (a) A random variable X has a density function $f(x)$ given by

$$
\begin{aligned}
f(x) & =e^{-x}, \quad x \geq 0 \\
& =0, \quad \text { elsewhere }
\end{aligned}
$$

Show that Chebyshev's inequality gives $P(|x-1| \geq 2) \leq \frac{1}{4}$.
(b) The marks obtained by 17 students in an examination have a mean 57 and variance 64. Find 99% confidence interval for the mean of population of marks assuming it to be normal. [Given that $P(t>2.921)=0.005$ for 16 degrees of freedom]. 4
7. (a) If X and Y be two random variable such that $E\left(X^{2}\right), E\left(Y^{2}\right)$ and $E(X Y)$ exist, then prove that $\{E(X Y)\}^{2} \leq E\left(X^{2}\right) E\left(Y^{2}\right)$. Where the equality holds iff $E\left(X^{2}\right)=0$ or $P(Y-a X=0)=1$ for some constant a.
(b) Prove that the maximum likelihood estimate of the Parameter α of a population having density function $\frac{2}{\alpha^{2}}(\alpha-x), 0<x<\alpha$, for a sample of unit size is $2 x, x$ being the sample value. Show that the estimate is biased.
8. (a) The bivariate random variable (X, Y) jointly follow the probability density function

$$
\begin{aligned}
f(x, y) & =k x^{2}(8-y) \quad x<y<2 x, 0 \leq x \leq 2 \\
& =0 \quad \text { elsewhere }
\end{aligned}
$$

Find k and the conditional probability density functions $f_{x}^{(x / y)}$ and $f_{y}^{(y / x)}$.
(b) Let p denotes the probability of getting a head when a given coin is tossed once. Suppose that the hypothesis $H_{0}: p=0.5$ is rejected in favour of $H_{1}: p=0.6$ if 10 trails result in 7 or more heads, calculate the probability of type I and type II errors.

