U.G. 4th Semester Examinations 2022

 MATHEMATICS (Honours)

 MATHEMATICS (Honours)}

Paper Code : DC-09

(Mechanics)
[CBCS]
Full Marks : 32
Time : Two Hours
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Group-A

1. Answer any four questions:
(a) Prove that the distance of the line of action of the resultant force of a system of coplanar forces from the origin is $\frac{G}{R}$.
(b) Find the centre of gravity of a circular are making an angle 2α at the centre.
(c) Define coefficient of friction.
(d) A particle moves with a S.H.M., its position of rest being at a distance a from the centre. Find, by the principle of energy, the velocity at the centre.
(e) A particle falls from a height h in time t upon a fixed horizontal plane. It rebounds and reaches the maximum height h^{\prime} in time t^{\prime}. Show that $t^{\prime}=e t$.
(f) Prove that the acceleration of a particle moving in a curve with uniform speed is $\rho \dot{\psi}^{2}$.
(g) Prove that the velocity from infinity under the attraction F to a point whose distance from the centre of force is r, is given by $v^{2}=-2 \int_{\infty}^{r} F d r$.

Group-B

Answer any two questions :
$5 \times 2=10$
2. The altitude of a cone is h and the radius of the base is r; a string is fastened to the vertex and to a point on the circumference of the circular base and is then put over a smooth peg. Show that, if the cone rest with its axis horizontal, the length of the string must be $\left(h^{2}+4 r^{2}\right)^{\frac{1}{2}}$.
3. A rod AB is movable about a point A and to the point B is attached a string whose other end is tied to a ring. The ring slides along a smooth horizontal wire passing through A. Prove by the principle of virtual work that the horizontal force necessary to keep the ring at rest is $\frac{W \cos \alpha \cos \beta}{2 \sin (\alpha+\beta)}$.
4. A particle moves under a force $m \mu\left\{3 a u^{4}-2\left(a^{2}-b^{2}\right) u^{5}\right\}(a>b)$ and is projected from an apse at a distance $a+b$ with velocity $\frac{\sqrt{\mu}}{a+b}$. Show that its orbit is $r=a+b \cos \theta$.
5. Two bodies m_{1} and m_{2} are attached to the lower end of an elastic string whose upper end is fixed and are hung at rest; m_{2} falls off. Show that the distance of m_{1} from the upper end of the string at time t is $a+b+c \cos \left(\frac{g}{b t}\right)^{\frac{1}{2}}$, where a is the natural length of the string, b and $c(b>c)$ are the distances by which it would extended when supporting m_{1} and m_{2} respectively.

Group-C

Answer any two questions :
6. (a) Forces X, Y, Z act along the three given lines given by the equations $y=0, z=c$; $z=0, x=a ; x=0, y=b$. Prove that the pitch of the equivalent wrench is $\frac{a Y Z+b Z X+c X Y}{X^{2}+Y^{2}+Z^{2}}$. If the wrench reduces to a single force, show that the line of action of the force must lie on the hyperboloid $(x-a)(y-b)(z-c)=x y z$. 5
(b) A regular hexagon is composed of six equal heavy rods freely jointed together and two opposite angles are connected by a string, which is horizontal, one rod being in contact with a horizontal plane, at the middle point of the opposite rod is placed a weight W_{1}, if W be the weight of each rod, show that the tension of the string is $\left(3 W+W_{1}\right) / \sqrt{3} \cdot 4$
7. (a) If a system of co-planar forces acting on a rigid body be in equilibrium and the body undergo a slight displacement consistent with the geometrical conditions of the system, prove that the algebraic sum of the virtual works is zero; and conversely, if this algebraic sum be zero, the forces are in equilibrium.
(b) A particle describes the curve $p^{2}=a r$ under a force F to the pole. Find the law of force.
8. (a) Prove that for a particle of mass m falling from rest under gravity from a height h above the ground, the sum of the kinetic energy and the potential energy of the particle is constant at every point of its path.

(3)

(b) A straight smooth tube revolves with constant angular velocity ω in a horizontal plane about one extremity which is fixed. If at zero time a particle inside it be at a distance a from a fixed end and moving with constant velocity V along the tube, then show that its distance at time t is $a \cosh \omega t+\frac{V}{\omega} \sinh \omega t$.

