U. G.6th Semester Examinations 2022
 MATHEMATICS (Honours)

Paper Code : DSE - 3A/3B/3C
[CBCS]
Full Marks : 32

Time : Two Hours

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
DSE-3A
[POINT SET TOPOLOGY]
Group-A
(4 Marks)

1. Answer any four questions:
$1 \times 4=4$
(a) Give an example to show that union of two topologies on a nonempty set may not be a topology.
(b) Which sets in a discrete topological space are closed?
(c) If X be a finite set and τ_{1}, τ_{2} be discrete topology and cofinite topology respectively. Compare τ_{1} and τ_{2}.
(d) Let $X=\{a, b, c, d\}$ and $\tau=\{\phi, x,\{b\},\{b, c\},\{b, c, d\}\}$ be a topology on X. Examine the connectedness of X.
(e) State continuum hypothesis.
(f) Give example of a compact subset in \mathbb{R} with usual topology.
(g) Find a basis for discrete topology on a set.

Group-B

(10 Marks)
Answer any two questions:
$5 \times 2=10$
2. Let (X, τ) be a topological space. $\phi \neq Y \subseteq X$. Show that $\tau_{y}=\{U \cap Y: U \in \tau\}$ forms a topology on Y.
3. If (X, τ) is a topological space and A, B are any two subsets of X, then show that $\overline{A \cup B}=\bar{A} \cup \bar{B}$.
4. Let $\left(X, \tau_{1}\right)$ and $\left(Y, \tau_{2}\right)$ be two topological space and $f: X \rightarrow Y$ be a continuous mapping. Then show that f carries compact set of $\left(X, \tau_{1}\right)$ to a compact set of $\left(Y, \tau_{2}\right)$.
5. Let $\left(X, \tau_{x}\right)$ and $\left(Y, \tau_{y}\right)$ be two topological spaces. Show that $f: X \rightarrow Y$ is continuous if and only if for every closed subset $V \subseteq Y$, the set $f^{-1}(V)$ is closed in X.

Group-C

(18 Marks)

Answer any two questions:
6. (a) Let (X, τ) be a topological space. $Y \subseteq X,\left(Y, \tau_{y}\right)$ be subspace of (X, τ). If F be a closed set in (X, τ) then show that $F \cap Y$ is closed set in $\left(Y, \tau_{y}\right)$ and conversely.
(b) Prove that a subfamily β of a topology τ on a set X be a base for τ iff each number of τ be the union of members of β.
7. (a) If $X_{1}, X_{2}, \ldots \ldots, X_{n}$ are topological spaces and $\beta_{1}, \beta_{2}, \ldots \ldots, \beta_{n}$ are bases respectively, then prove that $\beta=\left\{u_{1} \times u_{2} \times \ldots . . \times u_{n}: u_{1} \in \beta_{1}, u_{2} \in \beta_{2}, \ldots . u_{n} \in \beta_{n}\right\} \quad$ is a base of $X=X_{1} \times X_{2} \times \ldots . \times X_{n}$.
(b) State and prove Hausdorffs Maximal principle.
8. (a) In a topological space (X, τ), show that closure of a set is the intersection of all the closed sets containing the set.
(b) Let $X=\{a, b, c\}, \tau=\{\phi, X,\{a\}\}$. Find int $(\{b, c\}),\{\bar{a}\}$ and $\{\overline{b, c}\}$.
(3)

DSE - 3B

[CBCS]

[THEORY OF ORDINARY DIFFERENTIAL EQUATION]

Group-A

(4 Marks)

1. Answer any four questions:
(a) Sketch phase portraits of stable and unstable node.
(b) Discuss the existence and uniqueness of solutions for the IVP $t y^{1}=t+|y|, y^{(-1)}=1$.
(c) Express the differential equation $\frac{d^{4} y}{d t^{4}}-y=0$ in the form $\dot{\vec{x}}=A \vec{x}$.
(d) Find the maximal interval of existence of the equation $\dot{x}=x^{2}$ with $x(0)=1$.
(e) If A be a square matrix, then prove that $\frac{d}{d t} e^{A t}=A e^{A t}$.
(f) Find the Jordan canonical form of the matrix $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
(g) Investigate the stationary point $x=0, y=0$ of the system

$$
\begin{aligned}
& \dot{x}=2 x+y-5 y^{2} \\
& \dot{y}=3 x+y+\frac{x^{3}}{2}
\end{aligned}
$$

for stability in first approximation.

Group-B

(10 Marks)
Answer any two questions :
2. (a) Using Lyapunov function investigate the stability of the trivial solution of the system

$$
\begin{aligned}
& \frac{d x}{d t}=-x-2 y+x^{2} y^{2} \\
& \frac{d y}{d t}=x-\frac{y}{2}-\frac{x^{3} y}{2}
\end{aligned}
$$

(b) State Lyapunov's stability theorem.
3. Find the general solution and draw the phase portrait of the linear system

$$
\begin{aligned}
& \dot{x}_{1}=x_{1} \\
& \dot{x}_{2}=2 x_{2}
\end{aligned}
$$

4. If $\phi(t)$ be the fundamental matrix solution of the T-periodic system $\dot{x}=A x$ then there exist a non-singular constant matrix B such that

Let $B=\exp \left[\int_{0}^{T} t r .(A(s)) d s\right]$
5. Find the first four successive approximations $u^{(1)}(t, a), u^{(2)}(t, a), u^{(3)}(t, a)$ and $u^{(4)}(t, a)$ for the system

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1} \\
& \dot{x}_{2}=-x_{2}+x_{1}^{2} \\
& \dot{x}_{3}=x_{3}+x_{2}^{2}
\end{aligned}
$$

Show that $u^{(3)}(t, a)=u^{(4)}(t, a)=\ldots \ldots \ldots$. and hence $u(t, a)=u^{(3)}(t, a)$. Find the stable and unstable manifolds S and U for this problem.

Group-C

(18 Marks)
Answer any two questions :
6. (a) Prove that the regular system $\dot{x}=P(t) x$ where P is an $n \times n$ matrix function with minimal period T, has atleast one non-trivial solution $x=\psi(t)$ such that $\psi(t+T)=\mu \psi(t),-\infty<t<\infty$. Where μ is a constant.
(b) Prove also that the constant μ is independent of the choice of Φ.
7. State and prove the fundamental existence uniqueness theorem.
8. Using Liapunov function show that the origin is an asymptotically stable equilibrium point of the system.

$$
\underset{\sim}{\dot{x}}=\left[\begin{array}{c}
-x_{2}-x_{1} x_{2}^{2}+x_{3}^{2}-x_{1}^{3} \\
x_{1}+x_{3}^{3}-x_{2}^{3} \\
-x_{1} x_{3}-x_{3} x_{1}^{2}-x_{2} x_{3}^{2}-x_{3}^{5}
\end{array}\right]
$$

Show that the trajectories of the linearized system $\underset{\sim}{\dot{x}}=D \underset{\sim}{f}(0) \underset{\sim}{x}$ for this problem lie on the circles in planes parallel to the x_{1}, x_{2} plane; hence, the origin is stable, but not asymptotically stable for the linearized system.
(6)

DSE - 3C

[CBCS]

[INTEGRAL TRANSFORM]

Group-A
(4 Marks)

1. Answer any four questions:
(a) State and prove the second translation theorem for Laplace transform.
(b) Evaluate Fourier sine transform of $f(x)=\frac{1}{x}$.
(c) If $F(f(x))=\bar{f}(p)$, then find $F\{f(a x)\}=$?
(d) Show that if $f_{c}(s)$ is the Fourier cosine transform of $F(x)$, then show that Fourier cosine transform of $F\left(\frac{x}{a}\right)$ is $a f_{c}(a s)$.
(e) Write down the left shift theorem for z-transform.
(f) Find $L^{-1}\left\{\frac{e^{-\pi s}}{s^{2}+1}\right\}$.
(g) Use linearity property of Z-transformation to find $Z\{\sinh n\}$.

Group-B

(10 Marks)
Answer any two questions:
$5 \times 2=10$
2. Evaluate $\int_{0}^{\infty} t e^{-3 t} \cos (4 t) d t$, using Laplace transformation.
3. Establish the relation between Fourier transform and Laplace transform.
4. Find the Fourier sine and cosine transform of $\frac{e^{a x}+e^{-a x}}{e^{\pi x}-e^{-\pi x}}$.
5. Let the sequence $\left\{f_{n}\right\}$ be defined as $f_{n}-\frac{e^{-n}}{n!}$. Find the Z-transform of f_{n} i.e $Z\left\{f_{n}\right\}$.

Group-C

(18 Marks)
Answer any $\boldsymbol{t} \boldsymbol{w} \boldsymbol{o}$ questions :
6. (a) Find the cosine transform of a function of x which is unity for $0<x<a$ and zero for $x \geq a$. What is the function whose cosine transform is $\frac{\sin a s}{s}\left(\right.$ or $\left.\frac{\sin a p}{p}\right)$?
(b) Solve the integral equation $\int_{0}^{\infty} F(x) \cos (s x) d x=\left\{\begin{array}{cc}1-s, & 0 \leq s \leq 1 \\ 0, & s>1\end{array}\right.$.

$$
\begin{equation*}
\text { Hence deduce that } \int_{0}^{\infty} \frac{\sin ^{2} t}{t^{2}} d t=\frac{\pi}{2} \text {. } \tag{4}
\end{equation*}
$$

7. (a) Apply Laplace transform to solve $\frac{d^{2} y}{d t^{2}}+y=6 \cos 2 t$ gives that $y=3, \frac{d y}{d t}=1$ when t $=0$.
(b) Use convolution theorem to prove that

$$
\begin{equation*}
L^{-1}\left\{\frac{16}{p\left(p^{2}+4\right)^{2}}\right\}=\int_{0}^{t}(\sin 2 \alpha-2 \alpha \cos 2 \alpha) d \alpha \tag{4}
\end{equation*}
$$

8. (a) Solve the difference equations using z transforms of the following

$$
\begin{equation*}
y_{n+2}-3 y_{n+1}+2 y_{n}=0, y_{0}=-1, y_{1}=2 . \tag{5}
\end{equation*}
$$

(b) Find the Fourier transform of

$$
f(x)=\left\{\begin{array}{c|c|c}
1-x^{2} & |x| \leq 1 \tag{4}\\
0 & |x|>1
\end{array}\right.
$$

