U.G. 6th Semester Examinations 2022

MATHEMATICS (Honours)

Paper Code: DC-13

[CBCS]

Full Marks: 32 Time: Two Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

[LINEAR PROGRAMMING & GAME THEORY]

Group-A

1. Answer any four questions:

 $1 \times 4 = 4$

(a) How many basic solutions are there in the set of equation:

$$2x_1 - 5x_2 + x_3 + 3x_4 = 4$$

$$3x_1 - 10x_2 + 2x_3 + 6x_4 = 12$$

Justify your answer.

- (b) Examine whether $S = \{X = (x, y) / |x| \le 2\}$ is a convex set or not.
- (c) Write the dual of the primal problem:

$$\max \ z = -x_1 + x_2$$

subject to
$$5x_1 + x_2 \le 3$$

 $x_1 - 9x_2 \le 1$
 $x_2 \ge -1$

where $x_1, x_2 \ge 0$.

(d) Solve the 2×2 game by algebraic method :

Player B

(e) Show that the LPP

max
$$z = 2x_2 + x_3$$

subject to $x_1 + x_2 - 2x_3 \le 7$
 $-3x_1 + x_2 + 2x_3 \le 3$
 $x_1, x_2, x_3 \ge 0$

have an unbounded solution.

- (f) Write down the general rules for dominance in a game problem.
- (g) What is unbalanced assignment problem? How it can be solved?

Group-B

Answer any two questions:

5×2=10

2. Find the optimal solution of the following Transportation Problem:

	$\mathbf{D}_{_{1}}$	D_2	D_3	D_4	\mathbf{a}_{i}
O_1	5	4	6	14	15
O_2	2	9	9	6	4
O_3	6	11	7	13	8
$\mathbf{b}_{\mathbf{j}}$	9	7	5	6	-

3. Use two phase simplex method to solve

min
$$z = x_1 + x_2 + x_3$$

subject to $x_1 - 3x_2 + 4x_3 = 5$
 $x_1 - 2x_2 \le 3$
 $2x_2 + x_3 \ge 4$
and $x_1, x_2, x_3 \ge 0$

4. Solve the following assignment problem :

	A	В	С	D	Е
1	62	78	50	101	82
2	71	84	61	73	59
3	87	92	111	71	81
4	48	64	87	77	80

[P.T.O.]

5. Solve the following 4×3 game whose pay-off matrix is given by

Group-C

Answer any two questions:

$$9 \times 2 = 18$$

6. (a) Solve the following game by graphical method whose pay-off matrix is given by

3

6

(b) Prove that the transportation problem always has a feasible solution.

7. (a) Find the optimal solution of the following L.P.P. by solving its dual:

maximize
$$z = 3x_1 + 4x_2$$

subject to $x_1 + x_2 \le 10$
 $2x_1 + 3x_2 \le 18$
 $x_1 \le 8$
 $x_2 \le 6$
 $x_1, x_2 \ge 0$

(b) Obtain an initial basic feasible solution to the transportation problem using matrix minima method :

	\mathbf{D}_{1}	D_2	D_3	D_4	Supply
O_1	1	2	3	4	6
O_2	4	3	2	0	8
O_3	0	2	2	1	10
Demand	4	6	8	6	_

5+4

8. (a) Show that the feasible solution (1, 0, 1, 6) of the system

$$x_1 + x_2 + x_3 = 2$$

 $x_1 - x_2 + x_3 = 2$
 $2x_1 + 3x_2 + 4x_3 - x_4 = 0$

is not basic.

(b) Solve the following L.P.P. by simplex method:

maximize
$$z = 2x_1 + 3x_2$$

subject to $x_1 + x_2 \le 8$

$$x_1 + 2x_2 = 5$$

$$2x_1 + x_2 \le 8$$

$$x_1, x_2 \ge 0$$

5