U.G. 6th Semester Examinations 2022
 MATHEMATICS (Honours)

Paper Code : DC-13

[CBCS]
Full Marks : 32

Time : Two Hours

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

[LINEAR PROGRAMMING \& GAME THEORY]

Group-A

1. Answer any four questions:
$1 \times 4=4$
(a) How many basic solutions are there in the set of equation :

$$
\begin{aligned}
& 2 x_{1}-5 x_{2}+x_{3}+3 x_{4}=4 \\
& 3 x_{1}-10 x_{2}+2 x_{3}+6 x_{4}=12
\end{aligned}
$$

Justify your answer.
(b) Examine whether $S=\{X=(x, y) /|x| \leq 2\}$ is a convex set or not.
(c) Write the dual of the primal problem :
$\max z=-x_{1}+x_{2}$
subject to $5 x_{1}+x_{2} \leq 3$

$$
\begin{aligned}
x_{1}-9 x_{2} & \leq 1 \\
x_{2} & \geq-1
\end{aligned}
$$

where $x_{1}, x_{2} \geq 0$.
(d) Solve the 2×2 game by algebraic method:

Player B

Player A | 4 | -4 |
| :---: | :---: |
| -4 | 4 |

(e) Show that the LPP

$$
\begin{aligned}
\max z= & 2 x_{2}+x_{3} \\
\text { subject to } & x_{1}+x_{2}-2 x_{3} \leq 7 \\
& -3 x_{1}+x_{2}+2 x_{3} \leq 3
\end{aligned}
$$

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

have an unbounded solution.
(f) Write down the general rules for dominance in a game problem.
(g) What is unbalanced assignment problem? How it can be solved?

Group-B

Answer any two questions :
2. Find the optimal solution of the following Transportation Problem :

	D_{1}	D_{2}	D_{3}	D_{4}
O_{1}	5 5	4	6	14
O_{2}				
O_{3}	2	9	9	6
O_{3}				
$\mathrm{~b}_{\mathrm{j}}$	9	15		
	11	7	13	

3. Use two phase simplex method to solve

$$
\min z=x_{1}+x_{2}+x_{3}
$$

subject to $x_{1}-3 x_{2}+4 x_{3}=5$

$$
\begin{aligned}
& x_{1}-2 x_{2} \leq 3 \\
& 2 x_{2}+x_{3} \geq 4
\end{aligned}
$$

and $x_{1}, x_{2}, x_{3} \geq 0$
4. Solve the following assignment problem :

	A	B	C	D	E
1					
2	62	78	50	101	82
3					
4	71	84	61	73	59
87	92	111	71	81	
48	64	87	77	80	

5. Solve the following 4×3 game whose pay-off matrix is given by

Player B

Player A | 6 | -2 | 1 |
| :---: | :---: | :---: |
| 9 | 15 | 2 |
| 3 | -1 | 4 |
| 7 | 13 | 0 |

Group-C

Answer any $\boldsymbol{t} \boldsymbol{w o}$ questions :
6. (a) Solve the following game by graphical method whose pay-off matrix is given by

	B_{1}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$
$\mathrm{~A}_{1}$	4	-2	3	-1
$\mathrm{~A}_{2}$	-1	2	0	1
$\mathrm{~A}_{3}$	-2	1	-2	0

(b) Prove that the transportation problem always has a feasible solution.
7. (a) Find the optimal solution of the following L.P.P. by solving its dual :

$$
\begin{array}{ll}
\operatorname{maximize} & z=3 x_{1}+4 x_{2} \\
\text { subject to } & x_{1}+x_{2} \leq 10 \\
& 2 x_{1}+3 x_{2} \leq 18 \\
& x_{1} \leq 8 \\
& x_{2} \leq 6 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

(b) Obtain an initial basic feasible solution to the transportation problem using matrix minima method :

| | D_{1} | D_{2} | D_{3} | D_{4} |
| :---: | :---: | :---: | :---: | :---: | Supply

8. (a) Show that the feasible solution $(1,0,1,6)$ of the system

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=2 \\
& x_{1}-x_{2}+x_{3}=2 \\
& 2 x_{1}+3 x_{2}+4 x_{3}-x_{4}=0
\end{aligned}
$$

is not basic.
(b) Solve the following L.P.P. by simplex method :

$$
\begin{array}{ll}
\operatorname{maximize} & z=2 x_{1}+3 x_{2} \\
\text { subject to } & x_{1}+x_{2} \leq 8 \\
& x_{1}+2 x_{2}=5 \\
& 2 x_{1}+x_{2} \leq 8 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

