UG/1st Sem/MTM/H/21/CBCS

UG 1st Semester Examination 2021
 MATHEMATICS (Honours)
 Paper: DC-2
 [Algebra]
 (CBCS)

Full Marks : 32
Time : 2 Hours

The figures in the margin indicate full marks.
Notations and symbols have their usual meanings.

Group - A

(4 Marks)

1. Answer any four questions : $1 \times 4=4$
(a) State the De Moivre's theorem.
(b) Prove that $e^{n}>\frac{(n+1)^{n}}{n!}$, where $n \in \mathbb{N}$.
(c) Show that a polynomial of odd degree with real coefficients must have at least one real root.
(d) Let X and Y be two finite sets having m and n elements respectively. What will be the number of distinct relations that can be defined from X to Y ?
(c) If $a \mid c$ and $b \mid c$ with $\operatorname{gcd}(a, b)=1$, show that $a b \mid c$.
(f) Find the value of a and b so that the four vectors $(1,1,0,0),(1,0,0,1),(1,0$, $a, 0),(0,1, a, b)$ are linearly independent.
(g) The matrix $\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)$ has two eigen values 1 and 5 . Find the eigen vector corresponding to the eigen value 5 .

Group - B

(10 Marks)
Answer any two questions :
2. Express $\frac{-1+i \sqrt{3}}{1+i}$ in polar form and then deduce the value of $\cos \frac{5}{12} \pi$.
3. If $a_{1}, a_{2}, \ldots \ldots, a_{n}$ be n positive numbers and $a_{n} a_{n-1}=1$, then show that

$$
\left(\frac{a_{1}+a_{2}+a_{3}+\ldots .+a_{n}}{n}\right)^{n} \geq\left(\frac{a_{1}+a_{2}+a_{3}+\ldots .+a_{n-2}}{n-2}\right)^{n-2}
$$

4. Solve $x^{3}-6 x-9=0$ by Cardan's method.
5. Let $S=\{x \in R:-1<x<1\}$ and $f: R \rightarrow S$ be defined by $f(x)=\frac{x}{1+|x|}, x \in R$. Show that f is a bijection. Determine f^{-1}. 5

Group - C

(18 Marks)
Answer any two questions:
6. (a) Let $f: A \rightarrow B$ be a bijective mapping. Then show that the mapping $f^{-1}: B \rightarrow A$ is also a bijection and $\left(f^{-1}\right)^{-1}=f$.
(b) Satate the Fundamental theorem of arithmetic. Find the G.C.D of 792 and 385 and express it in the form $792 l+385 m$.
7. (a) Prove that the eigen vectors corresponding to two distinct eigen values of a real symmetric matrix are orthogonal.
(b) If $A=\left(\begin{array}{rrr}1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0\end{array}\right)$, then verify that A satisfies its own characteristic equation. Hence find A^{9}. Find also A^{-1}.
8. (a) If α, β, γ be the roots of the equation $x^{3}+p x^{2}+q x+r=0$, then find the value of

$$
\left(\frac{1}{\beta}+\frac{1}{\gamma}-\frac{1}{\alpha}\right)\left(\frac{1}{\gamma}+\frac{1}{\alpha}-\frac{1}{\beta}\right)\left(\frac{1}{\alpha}+\frac{1}{\beta}-\frac{1}{\gamma}\right) .
$$

(b) If $x=\cos \theta+i \sin \theta, y=\cos \phi+i \sin \phi$, then prove that $\frac{x^{m}}{y^{n}}+\frac{y^{n}}{x^{m}}=2 \cos (m \theta-n \phi)$, where m and n are integers.

