- (b) Write add and delete functions for queue with example.
 - (c) Discuss abstract and user-defined data types.

1

4. Write and explain insertion sort algorithm or bubble sort algorithm with a suitable example.

P-1(1+1+1)G/11

2011

COMPUTER SCIENCE (General) Second Paper

Full Marks: 50

Time: Two Hours

The figures in the margin indicate full marks.

Answer question No. 4 and any two from the rest.

- 1. (a) Explain 'Queue', 'Priority queue' and 'Dequeue' with proper example.
- (b) Write an algorithm to evaluate a post fix expression.
- (c) "A stack is a FILO list"—explain. Write PUSH and POP operations with relevant examples.
- 2. (a) Discuss sequential and index sequential file organisations and compare them.
- (b) Transform each of the following postfix expressions to infix:

$$AB + C - DEF - + *$$

and PQ + R*

3. (a) Define synonyms, collision and overflow in the context of hashing.

P.T.O.

(2)

	. ,	the follo	wing in	tegers by	using l	bubble sort
techniqu	ie.					
	4	8	1	12	7 . 2	2
4.	Write sho	ort notes	on any	two of th	e follov	wing:
						5×2=10
	(a) Physi	ical stora	age med	lia		
	(b) File	organizat	ion			
	(c) Data	dictiona	ry stora	ige.		

P-I(1+1+1)G/12

2012

COMPUTER SCIENCE (General) Second Paper

Full Marks: 50 Time: Two Hours
The figures in the margin indicate full marks.
Answer question No. 4 and any two from the rest.
1. (a) Differentiate between STACK and QUEUE. 4
(b) Write an algorithm to convert infix expression into
post fix expression. 8
(c) Take an example of a post fix expression and
evaluate it. 6
(d) What is Dequeue? 2
2. (a) Write down the algorithm for binary search. 8
(b) What is sorting? Explain selection sort with the
help of an example. 2+6=8
(c) Explain Hashing. 4
3. (a) What linked list? Explain singly and doubly
linked list. 2+6=8
(b) Discuss abstract and user-defined data types. 4

P.T.O.

2 / 58 - 450

and linear search?

technique.

using binary search technique.

fix expression using stack:

3

5. (a) What is the difference between binary search

(b) Write an algorithm to search an item from a list,

6. (a) Convert the following infix expression into post

7. (a) Sort the following integers by using selection sort

2

(b) Sort the following integer using selection sort.

17

30

P - (Q*R + (S/T))*U

(b) What is Garbage collection?

12

2, 1, 11, 3, 5, 6

3

2

5

5

2013
COMPUTER SCIENCE (General)
Second Paper
Full Marks: 50 Time: Two Hours
The figures in the margin indicate full marks.
Answer any five questions.
1. (a) What is stack? What are "PUSH" and "POP" operations? 2+3=5
(b) What do you mean by primitive data structures? How do you measure the time complexity of an algorithm? 2+3=5
2. Write an algorithm to insert an element into single linked list.
3. (a) Give an algorithm for Bubble sort. Find out the efficiency of the algorithm.
(b) Define B-tree.
4. (a) Define a data file. Explain Index sequential
organization. 2+5=7

P-I (1+1+1) G/13

3

P.T.O.

(b) Compare sequential and direct access file

2/58 - 475

organizations.

(1) Insert a number.
(ii) Delete a number. 3+3=6
4. (a) Write down some applications of STACK data
structure. 3
(b) With examples state the advantages of using a
recursive function. 2
(c) Write an algorithm to implement stack using
linked list. 5
5. (a) What is an array?
(b) Write down memory representation of an array.
2
(c) Write down an algorithm for two dimensional
matrix multiplication. 7
6. (a) Write down an algorithm for selection sort. 6
(b) Compute time possible complexity of selection
sorting algorithm.
7. (a) How you can measure the performance of a
sorting algorithm?
(b) Write down an algorithm to search an item from
a list using linear search technique.
(c) What are the differences between linear search
and binary search?

P-I (1+1+1) G /14

2014

COMPUTER SCIENCE (General) Second Paper

Full Marks: 50

Time: Two Hours

The figures in the margin indicate full marks.

Answer any five questions.

 $10 \times 5 = 50$

1. (a) Convert the following infix expression to a postfix expression:

$$A+C*(D+E\div(F-G))$$

- (b) Describe divide and conquer technique.
- 2. (a) Write algorithms to perform following actions on a circular doubly Linked-List?
 - (i) insert a number to the list.
 - (ii) delete a number from the list with example. 3+3=6
 - (b) Describe 'call by reference' technique. 4
- 3. (a) Write down the essential properties of a FIFO (First in First out) data structure.
- (b) Write algorithms to perform following actions on a FIFO data structure.

P.T.O.

(2)

- 5. (a) Write two advantages of linked list over array.
- (b) Write an algorithm to insert an element in a doubly, linked list. 3+7
 - 6. (a) Define a data file.
- (b) Mention the different characteristics of a sequential file organization. 2+8
 - 7. Write short notes on (any two):

 $5 \times 2 = 10$

- (a) Physical storage media.
- (b) Data dictionary storage.
- (c) Circular queue.

P-I(1+1+1) G/15

2015

COMPUTER SCIENCE (General) Second Paper

Full Marks: 50

Time: Two Hours

The figures in the margin indicate full marks.

Answer any five questions.

 $10 \times 5 = 50$

- 1. Write an algorithm to convert infix expression into postfix expression. Describe with an example.
- 2. (a) What is linked list? Explain singly and doubly linked list.
- (b) Write an algorithm to delete the last element of the singly linked list. (2+4)+4
 - 3. (a) Discuss abstract data type.
- (b) Sort the following integers by using Insertion sort technique: 12, 72, 25, 08, 94, 37, 42.

2+8

- 4. (a) Define: Queue and Dequeue.
- (b) Write an algorithm to implement queue using linked list. 4+6

P.T.O.