TUTORIAL/UG/1st Sem/H/22/GM (CBCS)

GOUR MAHAVIDYALAYA

MATHEMATICS (Honours)

Paper Code: MATH-DC01 Semester-I Class Test-I

Full Marks : 20

Time : 60 minutes

[5]

1. Answer all the question.

- (a) State the necessary and sufficient condition for the general equation of second degree to represents a pair of real straight lines. [1]
 (b) Show that the equation x² + 6xy + 9y² + 4x + 12y 5 = 0 represents a pair of parallel lines and find the distance between them. [2]
 (c) Use Cauchy's principle to show that lim cos 1/x does not exists. [1]
 (d) Evaluate lim { sin x / x → 0⁻ { sin x / x → 0⁻ { sin x / x → 0} }, where {x} = x [x] = fractional part of x for all x ∈ ℝ. [1/2+1/2]
- 2. Answer any three questions. $5 \times 3=15$
 - (a) Show that if one of the lines given by the equation $ax^2 + 2hxy + by^2 = 0$ be perpendicular to one of the lines given by $a'x^2 + 2h'xy + b'y^2 = 0$ then $(aa' - bb')^2 + 4(ah' + hb')(ha' + bh') = 0$. [5]
 - (b) i. If the pair of straight lines joining the origin to the points of intersection of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the line lx + my + n = 0 are perpendicular to each other, then show that $\frac{a^2+b^2}{l^2+m^2} = \frac{a^2b^2}{n^2}$.
 - ii. The axes are rotated through an angle of 60° without change of origin. The coordinates of a point are $(4, \sqrt{3})$ in the new coordinate system. Find the coordinate of if in the old system.

[3+2]

(c) A function $f : [0,1] \to \mathbb{R}$ is defined by f(x) = x, x is rational in [0,1]f(x) = (1 - x), x is rational in [0,1]. show that (i) f is injective on [0,1], (ii) f assumes every real number in [0,1] (iii) f is continuous at 1/2 and discontinuous at every other point in [0,1] [1+2+2] (d) Define continuity of a function on a domain *D*.

A function $f : \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} and $f(\frac{x+y}{2}) = \frac{f(x)+f(y)}{2}$ for all $x, y \in \mathbb{R}$. Prove that f(x) = ax + b, $(a, b \in \mathbb{R})$. [2+3]

Gour Mahavidyalaya

MATHEMATICS (Honours) Paper Code: MATH-H-DC02

Full Marks : 20

Time : 1 hour

- (a) Define a partition of a set with an example. Let *f* : ℝ → ℝ be a mapping defined by *f*(*x*) = *x*², *x* ∈ ℝ. Is it surjective? [2]
 (b) Give an example of a relation on a set
 - (i) Which is symmetric, transitive but not reflexive.
 - (ii) Which is symmetric but neither transitive nor reflexive. [1+1]
- 2. Any two. $2 \times 3 = 6$
 - (a) Let S be set containing n elements. How many different reflexive relation can be defined on S?
 - (b) Let P be an equivalence relation on a set A and $a, b \in A$, a $\bar{\rho}$ b. Show that $[a] \cap [b] = \phi$ [3]
 - (c) Let $f : \mathbb{R} \to S$ be a mapping defined by $f(x) = \frac{x}{1+|x|}, x \in \mathbb{R}$ where $S = \{x \in \mathbb{R} : -1 < x < 1\}$. Show that f is bijective. [3]
- 3. Answer any one.

- (b) i. If *a*, *b*, *c* are lengths of the sides of a triangle then show that $(1 + \frac{b}{a} - \frac{c}{a})^{a}(1 + \frac{c}{b} - \frac{a}{b})^{b}(1 + \frac{a}{c} - \frac{b}{c})^{c} < 1$ ii. If $\frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c} = 2$ then show that $abc < \frac{1}{8}$ [2+3]
- 4. Answer any one.

(a) i. Find the value of
$$\sum_{n=1}^{13} (i^n + i^{n-1})$$
, where $i = \sqrt{-1}$
ii. Find the product of all values of $\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^{\frac{3}{4}}$ [2+3]

(b) Write De Moivre's theorem.

Find the principal argument of
$$1 - \sin \alpha + i \cos \alpha$$
, $\alpha \in [0, 2\pi)$ [1+4]

Gour Mahavidyalaya

MATHEMATICS (Honours) Paper Code: MATH-H-DC02

Time : 1 hour

1.	(a)	Define a partition of a set with an example. Let $f : \mathbb{R} \to \mathbb{R}$ be a mapping		
		defined by $f(x) = x^2, x \in \mathbb{R}$. Is it surjective?	[2]	
	(b)	Give an example of a relation on a set		
		(i) Which is symmetric, transitive but not reflexive.		
		(ii) Which is symmetric but neither transitive nor reflexive.	[1+1]	
2.	Any	two. $2 \times 3 = 6$		
	(a)	Let S be set containing n elements. How many different reflexive rel	set containing n elements. How many different reflexive relation	
		can be defined on S?	[3]	
	(b)	Let P be an equivalence relation on a set A and $a,b \in A$, a $\bar{\rho}$ b. Show	v that	
		$[a] \cap [b] = \phi$	[3]	

(c) Let $f : \mathbb{R} \to S$ be a mapping defined by $f(x) = \frac{x}{1+|x|}, x \in \mathbb{R}$ where $S = \{x \in \mathbb{R} : -1 < x < 1\}$. Show that f is bijective. [3]

3. Answer any one.

Full Marks: 20

- (a) i. If *a*, *b*, *c* are three real numbers then show that a⁴ + b⁴ + c⁴ ≥ abc(a + b + c) When equal sign occurs?
 ii. Prove that, √n < (n!)^{1/n} < ⁿ⁺¹/₂, for n ≥ 3N [2+3]
- (b) i. If *a*, *b*, *c* are lengths of the sides of a triangle then show that $(1 + \frac{b}{a} - \frac{c}{a})^{a}(1 + \frac{c}{b} - \frac{a}{b})^{b}(1 + \frac{a}{c} - \frac{b}{c})^{c} < 1$ ii. If $\frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c} = 2$ then show that $abc < \frac{1}{8}$ [2+3]
- 4. Answer any one.
 - (a) i. Find the value of $\sum_{n=1}^{13} (i^n + i^{n-1})$, where $i = \sqrt{-1}$ ii. Find the product of all values of $\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^{\frac{3}{4}}$ [2+3]
 - (b) Write De Moivre's theorem.

Find the principal argument of $1 - \sin \alpha + i \cos \alpha$, $\alpha \in [0, 2\pi)$ [1+4]