Gour Mahavidyalaya
 MATHEMATICS (Honours)
 Paper Code: MATH-H-DC03
 [CBCS]

Full Marks: 20
Time : 1:30 hours
The figures in the margin indicate full marks.
Notations and symbols have their usual meanings.

Group - A

1. Is the set $A=\{x \in \mathbb{R}: 0 \leq x \leq 1\}$ enumerable? Justify your answer.
2. Show that, a non-empty subset of an enumerable set is countable.
3. Let, f be a function defined on \mathbb{R} by, $f(x)= \begin{cases}x^{2} \sin \frac{1}{x} & ; x \neq 0 \\ 0 & ; x=0 .\end{cases}$

Show that f is differentiable at 0 but f^{\prime} is not continuous at 0 .
4. Define perfect set. Show by an example that continuity of a function does not ensure it's differentiability.

Group - B

(Answer any five)

1. Test the convergence of the sequence $\left(x_{n}\right)$,
where $x_{n}=\left(\sqrt{2}-2^{\frac{1}{3}}\right)\left(\sqrt{2}-2^{\frac{1}{5}}\right) \ldots\left(\sqrt{2}-2^{\frac{1}{2 n+1}}\right)$
[Hint: Sandwich theorem, you can use the fact $2^{\frac{1}{2 n+1}} \geq 1 \forall n \in \mathbb{N}$]
2. State the Bolzano-Weierstrass theorem for sequence.Give an example of an unbounded sequence that has a convergent subsequence.
3. Let $a>0$ and $x_{1}>0$. Define $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)$ for all $n \in \mathbb{N}$. Show that the sequence $\left(x_{n}\right)$ is convergent and converges to \sqrt{a}.
4. Show that

$$
\log \left(\frac{5}{3}\right)=\frac{1}{2}\left[1+\frac{1}{3}\left(\frac{1}{4}\right)^{2}+\frac{1}{5}\left(\frac{1}{4}\right)^{4}+\cdots\right]
$$

[Hint: $\left.\log \frac{1+x}{1-x}=\log (1+x)-\log (1-x)\right]$
5. Test the convergence of

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left[\frac{1}{n}-\log \left(\frac{n+1}{n}\right)\right] \tag{2}
\end{equation*}
$$

[Hint: take $b_{n}=\frac{1}{n^{2}}$, comparison test]
6. If $\sum \frac{1}{n^{2}}=S$, Prove that $1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots=\frac{3}{4} S$
[Hint: since, $\sum \frac{1}{n^{2}}$ is absolute convergent, the sum of the series can't be altered.]
7. Show that, every Cauchy sequence is bounded. Is the converse true? Justify.
8. let f_{n} be the fibonacci sequence and let $x_{n}=\frac{f_{n+1}}{f_{n}}$. Suppose that $l=\lim x_{n}$. What is the value of l ? [Hint: use definition of fibonacci sequence.]

