GOUR MAHAVIDYALAYA 1ST UNIT TEST

MATHEMATICS (Honours)

Paper Code: DC-H-13

Full Marks: 20

Time: One Hour

 $4\times 5=20$

Group-A (Marks 20)

Answer any four questions.

- 1. Define Convex set, Convex hull and Convex polyhedron in E^n . If x_1, x_2 be real number.
- Show that the set $X = \{(x_1, x_2) : 9x_1^2 + 4x_2^2 \le 36\}$ is a convex set. [5]
- 2. Define Extreme point of a set and .Find the extreme point, if any of the following sets. [5]

 - $\begin{array}{l} \text{(a)} \quad S = \{(x,y): x^2 + y^2 \leq 16\} \\ \text{(b)} \quad P = \{(x,y): |x| \leq 1, |y| \leq 1\}. \\ \text{(c)} \quad W = \{(x,y): x^2 + y^2 \leq 1, x \geq 0, y \geq 0\}. \end{array}$
- 3. State fundamental theorem of L.P.P.
- If $x_1 = 2, x_2 = 3, x_3 = 1$ is a feasible solution of the L.P.P. . .

Maximize
$$z = x_1 + 2x_2 + 4x_3$$

Subject to

$$2x_1 + x_2 + 4x_3 = 11 3x_1 + x_2 + 5x_3 = 14 x_1, x_2, x_3 \ge 0$$

find a basis feasible solution.

4. Find the optimal solution to the following transportation problem:

	W_1	W_2	W_3	W_4	
F_1	19	30	50	10	7
F_2	70	30	40	60	9
F_3	40	8	70	20	18
	5	8	7	14	

5. Find the optimal assignment to find the minimum cost for the assignment problem with the following matrix [5]

	Ι	Π	III	IV	V
A	2	9	2	7	1
B	6	8	7	6	1
C	4	6	5	3	1
D	4	2	7	3	1
E	5	3	9	5	1

[5]

[5]

Class test - 1/UG/6th Sem/H/22/GM (CBCS)

2022 Gour Mahavidyalaya MATHEMATICS (Honours) Paper Code: MATH-H-DSE 03 Point set topology

[CBCS]

Full Marks : 20Time : 1 hr 15 minutes	
The figures in the margin indicate full marks.	
Notations and symbols have their usual meanings.	
Answer any two questions from 1 to 4.	5×2=10
1. Define subbasis for a topology on <i>X</i> . Give example. Let $X = \{a, b, c, d, e\}$ and let $A = \{\{a, b, c\}, \{c, d\}, \{d, e\}\}$. Find the topology on <i>X</i> concreted by A	[5]
generated by A.	[3]
2. When two topologies on X are said to be comparable? The topologies of \mathbb{R}_l (lower limit topology) and \mathbb{R}_k (K-topology) are not comparable.	[5]
3. If $\{\tau_{\alpha} : \alpha \in I\}$ be a family of topologies on <i>X</i> , show that $\bigcap_{\alpha \in I} \tau_{\alpha}$ is a topology on <i>X</i> Is $\bigcup_{\alpha \in I} \tau_{\alpha}$ a topology on <i>X</i> ? Justify.	[5]
4. Consider the set $Y = [-1, 1]$ as a subspace of R. Which of the following sets are open in <i>Y</i> ? Which are open in <i>R</i> ? $A = \{x : \frac{1}{2} < x < 1\}$ $B = \{x : \frac{1}{2} < x \le 1\}$ $C = \{x : \frac{1}{2} \le x < 1\}$ $D = \{x : \frac{1}{2} \le x \le 1\}$	
Discuss.	[5]
5. Answer any two questions.	4×2=8
 (a) Prove that only connected subsets of Q are singletons in the subspace topology of ℝ. (b) Prove that connectedness is a topological property. (c) Let X and Y be two connected topological spaces. Show that the product space X × Y is also connected. 	[4] [4]
	[+]
6. Answer any one question.	2×1=2
(a) Show that \mathbb{R} is connected in cofinite topology.	[2]
(b) Let τ and τ' are topological spaces on X. If $\tau' \supset \tau$ What does connectedness of X in topology imply about connectedness in the other?	[2]