UG/2nd Sem/H/20 (CBCS)

2020

MATHEMATICS (Honours)

Paper: MTMH-DC-4
[CBCS]

Full Marks: 32 Time: Two Hours

The figures in the margin indicate full marks.

Notations and symbols have their usual meanings.

Group - A (4 Marks)

1. Answer any four questions:

 $1 \times 4 = 4$

- (a) Let G be a group and $a, b \in G$ be such that $a^4 = e$ and $ab = ba^2$. Prove that a=e.
- (b) Express $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 5 & 4 & 1 & 2 & 6 & 8 & 7 \end{pmatrix}$ as the product of disjoint cycles.
- (c) Show that $(\mathbb{Q}, +)$ is not isomorphic to $(\mathbb{Q}^+, .)$.
- (d) Show that in a non-trivial ring R with unity, zero element has no multiplicative inverse.
- (e) If a is a fixed element of a ring R, then prove that the set $S = \{x \in R : xa = 0\}$ is a subring of R.
- (f) Let R be a ring with unity $1 \neq 0$ such that R has no nontrivial proper left ideal. Show that R is a division ring.
- (g) Define maximal ideal.

Page: 1 of 3

Group - B

(10 Marks)

Answer any <i>two</i> questions.	5×2=10
2. Show that every permutation can be written as the product of disjoint cycles.	. 5
3. Find all the homomorphisms of the group $(\mathbb{Z}, +)$ to the group $(\mathbb{Z}, +)$.	5
4. State and prove the first isomorphism theorem of rings.	5
5. Find all prime ideals and maximal ideals in the ring \mathbb{Z}_8 .	5
Group - C	
(18 Marks)	
Answer any two questions.	9×2=18
6. (a) Show that a subgroup H of a group G is normal if and only if $aHa^{-1}=H$ $a\in G$.	H, for all 5
(b) Consider the groups $G = (\mathbb{R}, +)$ and $H = (\mathbb{Z}, +)$. Let S be the subgroup of all nonzero complex numbers with unit modulus. Prove that the quotient group G/H is isomorphic to S .	
7. (a) Let R and S be two rings and $f:R\to S$ be a ring homomorphism. Shaker f is an ideal of R .	now that 4
(b) Let R be a commutative ring with unity. Then show that every maximal R is a prime ideal.	ideal of 3
(c) Show that the ideal $I=\langle 4\rangle$ (generated by 4) of $2\mathbb{Z}$ is maximal but not proved that the ideal $I=\langle 4\rangle$ (generated by 4) of $2\mathbb{Z}$ is maximal but not proved the second of the	rime. 2

- 8. (a) Let R be a commutative ring with unity $1 \neq 0$. Then show that an ideal M of R is maximal if and only if R/M is a field.
 - (b) With respect to usual addition and multiplication of matrices, show that the ring $\left\{ \left(\begin{array}{cc} a & b \\ 2b & a \end{array} \right) \colon a,b \in \mathbb{Q} \right\} \text{ forms a field but the ring}$

$$\left\{ \left(\begin{array}{cc} a & b \\ 2b & a \end{array} \right) : \ a, b \in \mathbb{R} \right\}$$

does not form a field.

4