UG/1st Sem/MTM/H_G/21/CBCS

UG 1st Semester Examination 2021
 MATHEMATICS (Honours/General)
 Paper : DC-1 / GE-1
 [Classical Algebra \& Analytic Geometry] (CBCS)

Full Marks : 32

The figures in the margin indicate full marks.
Notations and symbols have their usual meanings.

Group - A

(4 Marks)

1. Answer any four questions: $4 \times 1=4$
(a) Find the value of $\phi(323)$.
(b) Let A be a skew-symmetric matrix of order 3. What is the value of $\operatorname{det}(A)$.
(c) Find the modulus and argument of $-1-i$.
(d) Apply Descartes' rule of signs to determine the minimum number of complex roots of the equation : $x^{7}-3 x^{3}+1=0$.
(e) Find the points on the x-axis whose distance from the point (α, β, γ) is $\sqrt{\alpha^{2}+\beta^{2}+\gamma^{2}}$.
(f) Find the center and radius of the sphere $x^{2}+y^{2}+z^{2}+2 x+2 y+2 z-12=0$.
(g) Determine the rank of the matrix: $:\left(\begin{array}{llll}0 & 2 & 1 & 3 \\ 2 & 0 & 3 & 0 \\ 1 & 3 & 0 & 1\end{array}\right)$.

Group - B

(10 Marks)

Answer any two questions :
2. Use the principle of induction to prove that $(3+\sqrt{5})^{n}+(3-\sqrt{5})^{n}$ is divisible by 2^{n}, for all $n \in \mathbb{N}$.
3. Use Laplace's expansion to prove that $\left|\begin{array}{cccc}a & b & c & d \\ -b & a & d & -c \\ -c & -d & a & b \\ -d & c & -b & a\end{array}\right|=\left(a^{2}+b^{2}+c^{2}+d^{2}\right)^{2}$.
4. A change of the rectangular axes, without changing the origin, transforms $a x^{2}+2 h x y+b y^{2}$ and $c x^{2}+2 g x y+d y^{2}$ to $a^{\prime} x^{\prime 2}+2 h^{\prime} x^{\prime} y^{\prime}+b^{\prime} y^{\prime 2}$ and $c^{\prime} x^{\prime 2}+2 g^{\prime} x^{\prime} y^{\prime}+d^{\prime} y^{\prime 2}$, respectively. Show that $a d+b c-2 h g=a^{\prime} d^{\prime}+b^{\prime} c^{\prime}-2 h^{\prime} g^{\prime}$.
5. Show that only one tangent plane can be drawn to the sphere $x^{2}+y^{2}+z^{2}-2 x+6 y+2 z+8=0$ through the line $3 x-4 y-8=0=y-3 z+2$.

Group - C

(18 Marks)
Answer any two questions :
6. (a) If α, β, γ be the roots of the equation $x^{3}+q x-r=0$, then find the value of

$$
\begin{equation*}
\sum \frac{1}{\alpha^{2}-\beta \gamma} \tag{5}
\end{equation*}
$$

(b) Prove that $3 \cdot 4^{n+1} \equiv 3(\bmod 9)$, where $n \in \mathbb{N}$.
7. (a) If $\tan (\theta+i \phi)=\sin (\alpha+i \beta)$, prove that $\sin 2 \theta \cot \alpha=\sin h 2 \phi \cot h \beta$.
(b) If A be the matrix $\left(\begin{array}{lll}4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4\end{array}\right)$ then show that $A^{2}-10 A+16 I=O$. Hence obtain A^{-} ${ }^{1}$.
8. (a) Find the values of a and b for which the plane $a x+b y+5 z-7=0$ is perpendicular to the line $x=4 r+3, y=-5 r+4, z=-4 r-2$, where r is a parameter.
(b) A conic Γ^{\prime} is described having the same focus and eccentricity as the conic $\Gamma^{\prime}: \frac{l}{r}=1+e \cos \theta(e<1)$. The two conics Γ and Γ^{\prime} touch each other only at the point θ with $\theta=\alpha$. Prove that the latus rectum of the conic Γ^{\prime} is $\frac{2 l\left(1-e^{2}\right)}{1+2 e \cos \alpha+e^{2}}$.

