UG/5th Sem/H/21/CBCS

U.G. 5th Semester Examination 2021 MATHEMATICS (Honours) Paper : DC-11

[Advanced Analysis on ℝ & ℂ] (CBCS)

Full Marks : 32

Time : 2 Hours

The figures in the margin indicate full marks. Notations and symbols have their usual meanings.

Group - A

(4 Marks)

- 1. Answer any *four* questions :
 - (a) Let d be a metric on X. Determine all constants k such that kd is a metric on X.
 - (b) Give example of a sequence which is not convergent in a metric space.
 - (c) Show that the family $\left\{ \left(\frac{1}{n}, 1\right) : n \in \mathbb{N}, n \ge 2 \right\}$ is an open cover of (0, 1).
 - (d) Let $f: D \to \mathbb{C}$ be an analytic function defined by

$$f(z) = f(x+iy) = u(x,y) + iv(x,y), z = x+iy \in D$$
. Find $f'(z)$.

(e) Evaluate the line integral $\int_C \overline{z} \, dz$ from z = 0 to z = 4 + 2i along the curve given by $z(t) = t^2 + it$.

- (f) Show that the function f defined by $f(z) = \overline{z}, z \in \mathbb{C}$ is not analytic.
- (g) Find the radius of convergence of $\sum \frac{2n}{\underline{|n|}}$.

 $4 \times 1 = 4$

Group - B

(10 Marks)

	Ansv	wer any <i>two</i> questions :	2×5=10
2.	State and prove Cantor's Intersection theorem.		5
3.	Show that $C[a, b]$ with supremum metric is complete.		
4.	(a) Using Cauchy integral formula calculate the integral $\int_C \frac{z dz}{(9-z^2)(z+i)}$, where C is the second sec		C is the
		circle $ z = 2$ described in positive sense.	3
	(b)	Expand $\frac{1}{z}$ as a Taylor's series about $z = 1$.	2
5.	Let f	The an analytic function on a region <i>R</i> . Show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2$	$z) ^2$.
5			
Group - C			

(18 Marks)

Answer any *two* questions :

Let (X, d) be a metric space and A and B be two connected subsets of X such 6. (a) that $A \cap B \neq \emptyset$. Show that $A \cup B$ is a connected set of X. By an example, show that the intersection of two connected sets in a metric space need not be connected.

4

2×9=18

- (b) Determine a conjugate harmonic function of the function $u = e^{x} (x \cos(y) - y \sin(y))$ in the complex plane C. 5
- 7. (a) Let (X, d) be a metric space. Show that any convergent sequence in (X, d) is Cauchy sequence. Does the converse is hold? If not, give counter example. 3+2

(b) If $u = x^3 - 3xy^2$, show that there exists a functions v(x, y) such that w = u + iv is analytic in a finite region. 4

8. (a) Find the radius of convergence of the power series
$$\sum_{n=0}^{\infty} \frac{n+1}{n!} z^{n^3}$$
. 3

- (b) Show that the mapping $f : \mathbb{C} \to \mathbb{C}$ defined by $f(z) = z^n$ is conformal at all points except z = 0.
- (c) Find the Laurent's series which represents the function $\frac{z^2-1}{(z+1)(z+3)}$

when 2 < |z| < 3.

4