U.G. 5th Semester Examination 2021
 MATHEMATICS (Honours)
 Paper : DC-11
 [Advanced Analysis on $\mathbb{R} \boldsymbol{\&} \mathbb{C}$]

 (CBCS)

 (CBCS)}

Full Marks : 32
Time : 2 Hours

The figures in the margin indicate full marks.
Notations and symbols have their usual meanings.

Group - A

(4 Marks)

1. Answer any four questions :
(a) Let d be a metric on X. Determine all constants k such that $k d$ is a metric on X.
(b) Give example of a sequence which is not convergent in a metric space.
(c) Show that the family $\left\{\left(\frac{1}{n}, 1\right): n \in \mathbb{N}, n \geq 2\right\}$ is an open cover of $(0,1)$.
(d) Let $f: D \rightarrow \mathbb{C}$ be an analytic function defined by

$$
f(z)=f(x+i y)=u(x, y)+i v(x, y), z=x+i y \in D . \text { Find } f^{\prime}(z) .
$$

(e) Evaluate the line integral $\int_{C} \bar{z} d z$ from $z=0$ to $z=4+2 i$ along the curve given by $z(t)=t^{2}+i t$.
(f) Show that the function f defined by $f(z)=\bar{z}, z \in \mathbb{C}$ is not analytic.
(g) Find the radius of convergence of $\sum \frac{z n}{n}$.

Group - B

(10 Marks)

Answer any two questions :
2. State and prove Cantor's Intersection theorem.
3. Show that $C[a, b]$ with supremum metric is complete.
4. (a) Using Cauchy integral formula calculate the integral $\int_{C} \frac{z d z}{\left(9-z^{2}\right)(z+i)}$, where C is the circle $|z|=2$ described in positive sense.
(b) Expand $\frac{1}{z}$ as a Taylor's series about $\mathrm{z}=1$.
5. Let f be an analytic function on a region R. Show that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.

Group - C

(18 Marks)

Answer any two questions:
6. (a) Let (X, d) be a metric space and A and B be two connected subsets of X such that $A \cap B \neq \emptyset$. Show that $A \cup B$ is a connected set of X. By an example, show that the intersection of two connected sets in a metric space need not be connected.
(b) Determine a conjugate harmonic function of the function $u=e^{x}(x \cos (y)-y \sin (y))$ in the complex plane C.
7. (a) Let (X, d) be a metric space. Show that any convergent sequence in (X, d) is Cauchy sequence. Does the converse is hold? If not, give counter example. 3+2
(b) If $u=x^{3}-3 x y^{2}$, show that there exists a functions $v(x, y)$ such that $w=u+i v$ is analytic in a finite region.
8. (a) Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{n+1}{n!} z^{n^{3}}$.
(b) Show that the mapping $f: \mathbb{C} \rightarrow \mathbb{C}$ defined by $f(z)=z^{n}$ is conformal at all points except $z=0$.
(c) Find the Laurent's series which represents the function $\frac{z^{2}-1}{(z+1)(z+3)}$
when $2<|\mathrm{z}|<3$.

