U.G. 3rd Semester Examination 2021 MATHEMATICS (Honours)
 Paper : DC-5
 [Real Analysis]
 (CBCS)

Full Marks : 32

The figures in the margin indicate full marks.
Notations and symbols have their usual meanings.

Group - A

(4 Marks)

1. Answer any four questions : $4 \times 1=4$
(a) Prove that, a banded monotonic function is a function of banded variation.
(b) Examine the convergence of the improper integral $\int_{0}^{1} \frac{d x}{x^{2}}$.
(c) Applying Dirichlet's test determine the convergence of $\int_{0}^{\infty} \sin x^{2} d x$
(d) If f is continous and positive on $[\mathrm{a}, \mathrm{b}]$, then show that $\int_{a}^{b} f d x$ is also positive.
(e) State M_{n}-test for convergence of sequnce of functions.
(f) Let f be the function defined on $[0,2]$ by $f(x)=\left\{\begin{array}{lr}0, & x=\frac{n}{n+1} \\ 1, & \text { elsewhere }\end{array}\right.$

Is f integrable on $[0,2]$?
(g) Show that the Cauchy Principle value of $\int_{1}^{-1} \frac{d x}{x^{3}}$ exists.

Group - B

(10 Marks)
Answer any two questions :
2. If $\sum_{n=1}^{\infty} f_{n}(x)$ converges uniformly on $[a, b]$ and g is bounde on $[a, b]$, then show that the series $\sum_{n=1}^{\infty} g(x) f_{n}(x)$ is uniformly convergent on $[a, b]$.
3. A function $f:[0,1] \rightarrow \mathbb{R}$ is defined by $f(x)=(-1)^{n-1}$ when $\frac{1}{n+1}<x \leq \frac{1}{n}(n=1,2,3 \ldots$. and $f(0)=0$. Prove that f is integrable on $[0,1]$ and $\int_{0}^{1} f(x) d x=\log \left(\frac{4}{e}\right)$.
4. If a function $f:[a, b] \rightarrow \mathbb{R}$ is of bounded variation on $[a, b]$, then show that it is bounded on $[a, b]$ and $|f(x)| \leq|f(a)|+V_{f}[a, b]$ for all $x \in[a, b]$. $2+3$
5. Show that the integral $\int_{0}^{\frac{\pi}{2}} \log (\sin x) d x$ is convergent and hence evaluate it.

Group - C

(18 Marks)
Answer any two questions:
6. (a) If f is continuous on $[a, b]$ and if f^{\prime} exists and is boundedin the interior, say $\left|f^{\prime}(x)\right| \leq K$ for all x in (a, b), then show that f is of bounded variation on $[a, b]$. Also show that boundedness of the derivative of f is not necessary for f to be of bounded variation.
(b) Discuss the convergency of the sequence of function $f_{n}(x)=\frac{n x}{1+n^{2} x}$. Where $x \in[0,1]$.
7. (a) Let $f:[a, b] \rightarrow \mathbb{R}$ be Riemann integrable on $[a, b]$. Show that $|f|$ is also Riemann integrable on $[a, b]$. Is the converse true? Justify your answer. $4+2$
(b) Examine whether Fundamental theorem of Integral Calculus is applicable to evaluate the integral $\int_{0}^{3} f(x) d x$ where $f(x)=x[x], x \in[0,3]$.
8. (a) Obtain the Fourier series expansion of $f(x)$ in $[-\pi, \pi]$ where $f(x)=\left\{\begin{array}{c}0,-\pi \leq x<0 \\ \frac{\pi x}{4}, 0 \leq x \leq \pi\end{array}\right.$. Hence show that the sum of the series $1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots$. is $\frac{\pi^{2}}{8}$. $4+2$
(b) Let $X \subset \mathbb{R}$ and for each $n \in N, f_{\mathrm{n}}: X \rightarrow \mathbb{R}$ be continuous on X. If $\left\{f_{n}\right\}$ converges uniformly to f on X then show that f is continuous on X.

