U.G. 5th Semester Examination 2021
 MATHEMATICS (Honours)
 Paper : DC-12
 [Numerical Methods \& C Programming Language] (CBCS)

Full Marks : 32

The figures in the margin indicate full marks.
Notations and symbols have their usual meanings.

Group - A

(4 Marks)

1. Answer any four questions:
(a) Find the number of significant figures in the approximate number 0.4785 , given its relative error as 0.2×10^{-2}.
(b) In what kind of interpolation Lagrange's method is suitable?
(c) In case of multiple root α of $f(x)=0$, can we obtain it using Newton-Raphson method? Justify your answer.
(d) What is the effect of round-off error in Gauss Elimination method?
(e) Functions in C programming is classified in two categories. Write their names.
(f) What is an entry controlled loop in C programming?
(g) Give an example of rule of defining constants in C programming.

Group - B

(10 Marks)

Answer any two questions :

1. (a) Compute $f^{\prime}(1.5)$ for the function $y=f(x)$, given in the following table:

x	$:$	1	2	3	4	5	6
$f(x)$	$:$	1	8	27	64	125	216

(b) Find $y(1)$ by Euler's method from the given differential equation by taking $h=0.2 \frac{d y}{d x}=x y, y=1$, when $x=0$.
3. Solve the following system
$3 x_{1}+2 x_{2}-4 x_{3}=12$
$-x_{1}+5 x_{2}+2 x_{3}=1$
$2 x_{1}-3 x_{2}+4 x_{3}=-3$
by matrix factorization method.
4. Use Lagrange's interpolation formula to find $f(10)$ from the given tabular values

x	$:$	5	6	9	11
$f(x):$	12	13	14	16	

5. Use Stirling's Interpolation formula, to compute $f(0.22)$ from the following table
$x \quad: \quad 0.0$
0.1
0.2
0.3
0.4
$f(x): 1.0000$
1.1052
1.2214
1.3498
1.4918

Group - C

(18 Marks)

Answer any two questions :
6. (a) Establish Newton-cotes formula for numerical integration. Derive Simpson's one third rule from this.
(b) Calculate the value of $\int_{1.2}^{1.6}\left(x+\frac{1}{x}\right) d x$ correct upto two significant figures, taking four intervals.
7. (a) Compute $y(1.3)$, from $\frac{d y}{d x}=x^{2}+y^{2}$ with $y(1)=0$, using Runge-Kutta method of order 4.
(b) Use the power method to find the dominant eigen value and corresponding eigen vector of the matrix

$$
A_{3 \times 3}=\left[\begin{array}{ccc}
1 & 6 & 1 \\
1 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

8. (a) Write a computer program in C to evaluate a real root of the equation $f(x)=0$ by the method of bisection.
(b) Show that $\left(\frac{\Delta^{2}}{E}\right) e^{x} \times \frac{E e^{x}}{\Delta^{2} e^{x}}=e^{x}$.
(c) Discuss about for Loop, while Loop, do-while Loop.
