UG/3rd Sem/G/21/CBCS

U.G. 3rd Semester Examination 2021 MATHEMATICS (General)

Paper : SEC-1
[Number Theory \& Boolean Algebra] (CBCS)

Full Marks : 32
Time : 2 Hours

The figures in the margin indicate full marks.
Notations and symbols have their usual meanings.

Group - A

(4 Marks)

1. Answer any four questions: $4 \times 1=4$
(a) Prove that $n(n+1)(n+2)$ where $n \in z$ is divisible by 6 .
(b) Prove that if $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$ then $a \equiv c(\bmod m)$.
(c) State Fermats little Theorem.
(d) If $2 x \equiv 1(\bmod 21)$ then find the value of x ?
(e) In Boolean algebra prove that $a+a \cdot b=a$.
(f) Define sublattices.
(g) Define minimal and maximal forms of Boolean polynomials.

Group - B
(10 Marks)
Answer any two questions:
$2 \times 5=10$
2. Show that Congruence is an equivalence relation.
3. Use Euclid's algorithm to establish that the cube of any integer is of the form $9 k, 9 k+1$ or $9 k+8$; for some $k \in \mathbb{Z}$.
4. Change the following to disjunctive normal form, $\left(x^{\prime}+y^{\prime}+z\right)\left(x+y^{\prime}+z^{\prime}\right)\left(x^{\prime}+y+z^{\prime}\right)$.
5. Construct the truth table for the Boolean expression of $\left(x^{\prime}+y^{\prime}+z^{\prime}\right)^{\prime}+x^{\prime}+y^{\prime}$.

Group - C

(18 Marks)
Answer any two questions:
6. What is ISBN? Find the check digit of the following ISBN assuming it is valid 81-7468-245-x.
7. (a) State and prove fundamental theorem of arithmetic.
(b) Justify whether there exists integral solution of the equation $91 m+63 n=6$ or not?
8. (a) Find the remainder when $1!+2!+3!+\ldots \ldots .+100$! is divided by 12 . 4
(b) Describe a systematic method of arranging files using Hashing functions.

