UG/3rd Sem/MATH/H/21/CBCS

U.G. 3rd Semester Examination 2021 MATHEMATICS (Honours) Paper : DC-6 [Linear Algebra] (CBCS)

Full Marks : 32

Time : 2 Hours

The figures in the margin indicate full marks. Notations and symbols have their usual meanings.

Group - A

(4 Marks)

- 1. Answer any *four* questions :
 - (a) If A be a 3×3 matrix with α and β be only two eigen values ($\alpha \neq \beta$), then find the characteristic polynomial of A.
 - (b) Examine if the set $S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\}$ is a subspace of \mathbb{R}^3 .
 - (c) For what real values of K does the set $S = \{(K, 1, 1), (1, K, 1), (1, 1, K)\}$ form a basis of R^3 .
 - (d) Find the matrix representation of a linear mapping $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (x + y, x y) relative to the basis $\{(1, 0), (0, 1)\}$ of \mathbb{R}^2 .
 - (e) The matrix $A = \begin{pmatrix} 1 & 3 \\ 4 & 5 \end{pmatrix}$ has an eigen vector $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Find the corresponding eigen value.
 - (f) If α , β be any two vectors in a Euclidean space *V*, then prove that, $\|\alpha + \beta\|^2 + \|\alpha - \beta\|^2 = 2\|\alpha\|^2 + 2\|\beta\|^2$.
 - (g) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by $T(x_1, x_2) = (x_1 + x_2, x_1 x_2, x_2)$. Then find the Rank *T*.

 $4 \times 1 = 4$

Group - B

(10 Marks)

Answer any *two* questions :

- 2. If U and W be two subspaces of a vector space V over a field F, then the union $U \cup W$ is a subspace of V iff either $U \subset W$ or $W \subset U$. 5
- Apply Gram Schmidt Process to the set {(1, 1, 1), (2, -2, 1), (3, 1, 2)} to obtain an orthonormal basis of R³ with standard inner product.
- 4. Prove that the mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x_1, x_2, x_3) = (-2x_1 + x_2, -x_1 + 2x_2 + 4x_3, 3x_1 + x_3)$ is a linear transformation. Find the matrix of *T* in the ordered basis (α_1 , α_2 , α_3) where $\alpha_1 = (-1, 2, 1), \alpha_2 = (2, 1, 1)$ and $\alpha_3 = (1, 0, 1)$.
- 5. If $A = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$, then use Cayley-Hamilton theorem to express $A^6 - 4A^5 + 8A^4 - 12A^3 + 14A^2$ as a linear polynomial in A.

Group - C

(18 Marks)

Answer any *two* questions :

6. (a) Find an orthogonal matrix which diagonalises $A = \begin{pmatrix} 6 & 4 & -2 \\ 4 & 12 & -4 \\ -2 & -4 & 13 \end{pmatrix}$. 5

- (b) Prove that the eigen vectors corresponding to two distinct eigen values of a real symmetric matrix are orthogonal. 4
- 7. (a) Show that the mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x y + 2z, x 2y + 2z, 2x + y) is an isomorphism.
 - (b) Let V and W be vector spaces of equal (finite) dimension and $T: V \to W$ be linear. Prove that T is one-to-one if and only if Rank $(T) = \dim(V)$.

2×5=10

2×9=18

- 8. (a) Prove that in a Euclidean space *V*, two vectors α , β are linearly dependent if and only if $|(\alpha, \beta)| = ||\alpha|| ||\beta||$.
 - (b) Find a basis and determine the dimension of the subspace, $S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in R_{2\times 2} : a+b=0 \right\} \text{ of the vector space } R_{2\times 2}.$ 5