U.G. 3rd Semester Examination 2021 MATHEMATICS (Honours)
 Paper : DC-6
 [Linear Algebra]
 (CBCS)

Full Marks : 32
Time : 2 Hours

The figures in the margin indicate full marks.
Notations and symbols have their usual meanings.

Group - A

(4 Marks)

1. Answer any four questions:
(a) If A be a 3×3 matrix with α and β be only two eigen values $(\alpha \neq \beta)$, then find the characteristic polynomial of A.
(b) Examine if the set $S=\left\{(x, y, z) \in R^{3}: x+y+z=1\right\}$ is a subspace of R^{3}.
(c) For what real values of K does the set $S=\{(K, 1,1),(1, K, 1),(1,1, K)\}$ form a basis of R^{3}.
(d) Find the matrix representation of a linear mapping $T: R^{2} \rightarrow R^{2}$ defined by $T(x, y)=(x+y, x-y)$ relative to the basis $\{(1,0),(0,1)\}$ of R^{2}.
(e) The matrix $A=\left(\begin{array}{ll}1 & 3 \\ 4 & 5\end{array}\right)$ has an eigen vector $\binom{1}{2}$. Find the corresponding eigen value.
(f) If α, β be any two vectors in a Euclidean space V, then prove that, $\|\alpha+\beta\|^{2}+\|\alpha-\beta\|^{2}=2\|\alpha\|^{2}+2\|\beta\|^{2}$.
(g) Let $T: R^{2} \rightarrow R^{3}$ be a linear transformation given by $T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, x_{1}-x_{2}\right.$, x_{2}). Then find the Rank T.

Group - B

(10 Marks)
Answer any two questions :
2. If U and W be two subspaces of a vector space V over a field F, then the union $U \cup W$ is a subspace of V iff either $U \subset W$ or $W \subset U$.
3. Apply Gram Schmidt Process to the set $\{(1,1,1),(2,-2,1),(3,1,2)\}$ to obtain an orthonormal basis of R^{3} with standard inner product.
4. Prove that the mapping $T: R^{3} \rightarrow R^{3}$ defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(-2 x_{1}+x_{2},-x_{1}+2 x_{2}+\right.$ $4 x_{3}, 3 x_{1}+x_{3}$) is a linear transformation. Find the matrix of T in the ordered basis (α_{1}, α_{2}, α_{3}) where $\alpha_{1}=(-1,2,1), \alpha_{2}=(2,1,1)$ and $\alpha_{3}=(1,0,1)$.
5. If $A=\left(\begin{array}{rr}1 & 2 \\ -1 & 3\end{array}\right)$, then use Cayley-Hamilton theorem to express $A^{6}-4 A^{5}+8 A^{4}-12 A^{3}+14 A^{2}$ as a linear polynomial in A.

Group - C

(18 Marks)

Answer any two questions:
6. (a) Find an orthogonal matrix which diagonalises $A=\left(\begin{array}{ccc}6 & 4 & -2 \\ 4 & 12 & -4 \\ -2 & -4 & 13\end{array}\right)$.
(b) Prove that the eigen vectors corresponding to two distinct eigen values of a real symmetric matrix are orthogonal.

4
7. (a) Show that the mapping $T: R^{3} \rightarrow R^{3}$ defined by $T(x, y, z)=(x-y+2 z, x-2 y+$ $2 z, 2 x+y$) is an isomorphism.
(b) Let V and W be vector spaces of equal (finite) dimension and $T: V \rightarrow W$ be linear. Prove that T is one-to-one if and only if $\operatorname{Rank}(T)=\operatorname{dim}(V)$.
8. (a) Prove that in a Euclidean space V, two vectors α, β are linearly dependent if and only if $|(\alpha, \beta)|=\|\alpha\|\|\beta\|$.
(b) Find a basis and determine the dimension of the subspace, $S=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in R_{2 \times 2}: a+b=0\right\}$ of the vector space $R_{2 \times 2}$.

